Noliac Group develops and manufactures piezoelectric materials based on modified lead zirconate titanate (PZT) of high quality and tailored for custom specifications.

Piezoelectric materials may be used to produce e.g.:

- Actuators
- Sensors
- Generators
- Transducers

noliac

Piezo materials specifications

Properties	Symbol & unit	NCE40	NCE41	NCE46	NCE51	NCE53	NCE55	NCE56	NCE57 [*]	NCE59 [*]	NCE80
DIELECTRIC PROPERTIES 10%)	(tolerances +/-										
Relative Dielectric Constant	ε ^T ₃₃	1250	1350	1300	1900	1600	5000	2900	1800	2900	1050
Dielectric Loss Factor	tgð [10 ⁻⁴]	25	40	30	150	130	220	140	170	190	20
Dielectric Loss Factor at 400V/mm	tgð [10 ⁻⁴]	140	200								100
ELECTROMECHANICAL PF	ROPERTIES (tolera	nces +/-	5%)								
Coupling Factors**	k _p	0.58	0.57	0.57	0.65	0.56	0.62	0.64	0.59	0.64	0.55
	k ₃₁	0.34	0.33	0.33	0.38	0.32	0.39	0.37	0.33	0.37	0.30
	k ₃₃	0.70	0.68	0.68	0.74	0.65	0.72	0.74	0.70	0.75	0.68
	k _t	0.50	0.50	0.47	0.50	0.47	0.50	0.50	0.47	0.52	0.48
Piezoelectric Charge Constants	-d ₃₁ [10 ⁻¹² C/N]	140	130	130	195	150	260	250	170	240	100
	d ₃₃ [10 ⁻¹² C/N]	320	310	290	443	360	670	580	425	575	240
Piezoelectric Voltage Constants	-g ₃₁ [10 ⁻³ Vm/N]	11	11	11	13	9	9	9	11	10	11
	g ₃₃ [10 ⁻³ Vm/N]	27	25	28	26	23	19	20	27	23	27
Frequency Constants	N ^E _p [m/s]	2160	2280	2230	1925	2180	1970	2000	2010	1970	2270
	N ^D t [m/s]	1980	2000	2040	2000	2040	1990	2030	1950	1960	2050
	N ^E ₁ [m/s]	1470	1600	1500	1370			1530	1400	1410	1610
	N ^D ₃ [m/s]	1340	1500	1800	1320			1400	1500	1500	1500
PHYSICAL PROPERTIES (t	olerances +/- 5%)		'								
Mechanical Quality Factor	Q _m	700	1400	>1000	80	80	70	80	80	90	1000
Density	ρ [10 ³ kg/m ³]	7.75	7.90	7.70	7.85	7.60	8.00	7.65	7.70	7.45	7.80
Elastic Compliances	s ^E ₁₁ [10 ⁻¹² m ² /N]	13	13	13	16	16	17	18	17	17	11
	s ^E ₃₃ [10 ⁻¹² m ² /N]	17	16	20	19	18	21	20	23	23	14
Curie Temperature	T _c [°C]	318	284	330	360	340	159	242	350	235	307

*) For multilayer components only.

**) Measured in accordance with standard EN 50324.

The values listed above are for reference purposes only and cannot be applied unconditionally to other shapes and dimensions. Values vary depending on the components' actual shape, surface finish, shaping process and post-processing.

Piezo materials characteristics

Piezoelectric materials have the property of developing an electric charge when mechanical stress is exerted on them.

In these materials, an applied electric field produces a proportional strain. The electrical response to mechanical stimulation is called the direct piezoelectric effect, and the mechanical response to electrical stimulation is called the converse piezoelectric effect.

Piezoelectric materials are usually divided into two groups. The antonyms "hard" and "soft" doped piezoelectric materials refer to the ferroelectric properties, i.e. the mobility of the dipoles or domains and hence also to the polarization/depolarization behaviour.

Hard doped piezoelectric materials

Hard doped PZT materials can be exposed to high electrical and mechanical stresses. The stability of their properties makes them ideal for high-power applications.

Piezoelectric materials NCE41 and NCE40 are low loss materials for high power applications. The low dielectric and mechanical losses (tan(δ), Qm) combined with high piezoelectric charge constant (d₃₃) make them suitable for high-performance ultrasonic applications.

Furthermore NCE41 and NCE40 can be exposed to high repetitive quasi-static and dynamic loads for ignition applications. NCE41 and NCE40 differ from each other in permittivity and mechanical quality factor values. This variability enables to fulfil all specific requirements.

Piezoceramic material NCE80 is intended for power transducers with highest electric drive. Its low dielectric and mechanical losses at extremely high electric drive and high coupling factors make it suitable for high-power applications.

Soft doped piezoelectric materials

Soft doped piezoelectric materials are distinguished by a comparatively high domain mobility and thus "ferroelectrically soft" behaviour, i.e. relatively easy polarization.

These materials are characterized by high relative permittivity, large electromechanical coupling factors, large piezoelectric constants and low mechanical quality factors. They are particularly suitable for sensing applications, receivers, actuators and low power transducers.

Piezo material specifications

Piezoelectric materials NCE51 and NCE57 are standard soft materials, particularly suitable for actuators and low power nonresonant applications in which high coupling factor and /or high charge sensitivity are requested.

Piezoceramic material NCE53 has slightly lower electro-mechanical coupling factor, but has the advantage of higher temperature stability, and it is suitable especially for shear mode vibration sensors.

Piezoelectric materials NCE55 and NCE56 are very high sensitivity materials featuring extremely high permittivity, large coupling factor and piezoelectric constant. They have a relatively low Curie temperature. These materials are suitable for a wide range of high sensitivity applications with limited temperature range of operation.

Navy types - equivalences										
Hard materials			Soft materials							
Material	NCE40	NCE41	NCE46	NCE80	NCE51	NCE53	NCE55	NCE56	NCE57	NCE59
Navy Туре	1	I	I	ш		Ш	VI	V	Ш	V
European standard EN 50324-1 100 100 100 200 200 600 600 200 600						600				

Technical piezo ceramics description

Piezoelectricity is the property of nearly all materials that have a non-centrosymmetric crystal structure.

Some naturally occurring crystalline materials that possess these properties are quartz and tourmaline. Some artificially produced piezoelectric crystals are Rochelle salt, ammonium dihydrogen phosphate and lithium sulphate. Another class of materials possessing these properties is polarized piezoelectric ceramic. In contrast to the naturally occurring piezoelectric crystals, piezoelectric materials have a polycrystalline structure.

The most commonly produced piezoelectric materials are lead zirconate titanate (PZT), barium titanate and lead titanate. Ceramic materials have several advantages over single crystals, especially the ease of fabrication into a variety of shapes and sizes. In contrast, single crystals must be cut along certain crystallographic directions, limiting the possible geometric shapes.

PZT (and many other piezoelectric materials) have crystal structures belonging to the perovskite family with the general formula ABO₃. In the following figure the ideal, cubic perovskite structure (centrosymmetric) and tetragonal (ferroelectric) structure are shown.

A piezoelectric ceramic material consists of small grains (crystallites), each containing domains in which the polar direction of the unit cells are aligned. Before poling, these grains and domains are randomly oriented; hence the net polarization of the material is zero, i.e. the ceramic does not exhibit piezoelectric properties. The application of a sufficiently high DC field (called poling process) will orient the domains in the field direction and lead to a remanent polarization of the material.

The perovskite structure is very tolerant to element substitution (doping) by formation of solid solutions. The possibilities of doping in these materials lead to an unlimited number of possible perovskite-type oxides. Even small amounts of a dopant may cause huge changes in the properties of a material.

The coupling of electrical and mechanical energy makes piezoelectric materials useful in a wide range of applications.

Constitutive equations

The piezoelectric effect depends on directions. The reference axis, called axis 3, is taken parallel to the direction of poling. Axes 1 and 2 are defined arbitrarily in order to form a direct coordinate system with axis 3. 4, 5 and 6 represent shear movements around axes 1, 2 and 3 respectively.

Piezoelectric coefficients

Based on this coordinate system, the piezoelectric effect can be described in a simplified way by matrix coefficients. The coefficients "d" (piezoelectric change constant 3×6 matrix) and "s^E" (elastic compliance 6×6 matrix) are commonly used.

Basic piezoelectric equations

These coefficients are used to relate the strain "S" (6-components tensor) to the stress "T" (6-components tensor) and electrical field "E" (3-components vector).

$$S = s^E T + d.E$$

In this equation, the "s^E.T" term describes the mechanical compliance of the component, similarly to any mechanical component. The "d.E" term describes the piezoelectric effect, i.e. strain generated by electrical field.

The above equations are useful for designing a piezoelectric application. However, it must be kept in mind that they represent an approximation.

Definition of piezoelectric properties

Properties	Symbol / Definition	Dimension
ELECTRICAL PROPERTIES		
Relative Dielectric Constant (at 1V/1kHz)	$ \begin{array}{l} KT = \frac{\varepsilonT}{\varepsilon_0} \text{ with} \\ \varepsilon^T = permittivity (F/m) \\ \varepsilon_0 = permittivity of free space (8.854 \times 10^{-12} \text{ F/m}) \end{array} \end{array} $	1
	K ₃ T → All stresses on material are constant or no external forces → Electrodes are perpendicular to 3 axis	
Dielectric Loss Factor	$tan(\delta) = \frac{Effective \ series \ resistance}{Effective \ series \ reactance}$	
ELECTROMECHANICAL PROPER	TIES	1
Electromechanical Coupling Factors	$k = \sqrt{\frac{Mechanical energy stored}{Electrical energy applied}} = \sqrt{\frac{Electrical energy stored}{Mechanical energy applied}}$	
	k ₃₁ Applied stress, or the piezoelectrically induced strain, is in 1 direction Electrodes are perpendicular to 3 axis	1
	k ₃₃ → Applied stress, or piezoelectrically induced strain, is in 3 direction → Electrodes are perpendicular to 3 axis	1
Piezoelectric Charge Constants	$d = \frac{Strain developed}{Applied field} = \frac{Charge density}{Applied stress}$	
	d ₃₁ Applied stress, or the piezoelectrically induced strain, is in 1 direction Electrodes are perpendicular to 3 axis	C/N
	d ₃₃ Applied stress, or piezoelectrically induced strain, is in 3 direction Electrodes are perpendicular to 3 axis	C/N
Piezoelectric Voltage Constants	$g = \frac{\text{Strain developed}}{\text{Applied charge density}} = \frac{\text{Field developed}}{\text{Applied mechanical stress}}$	
	g31 Applied stress, or the piezoelectrically induced strain, is in 1 direction Electrodes are perpendicular to 3 axis	Vm/N
	g ₃₃ → Applied stress, or piezoelectrically induced strain, is in 3 direction → Electrodes are perpendicular to 3 axis	Vm/N

continues on next page

Properties	Symbol / Definition	Dimension
Frequency Constants	N = F.X With F = resonance frequency (Hz) X = dimension governing the resonance (m)	m/s
	NEp Planar mode, disc Measured with closed circuit	m/s
	NEL Measured with closed circuit	m/s
	ND ₃ Longitudinal mode, cylindar Measured with closed circuit	m/s
Elastic Compliances	$S = \frac{1}{Y} = \frac{Strain}{Stress}$ with Y = Young modulus	
	S ₁₁ ^E Compliance is measured with closed circuit Stress or strain is in 1 direction Strain or stress is in 1 direction	10 ⁻¹² m ² /N
	S ₃₃ ^E Compliance is measured with closed circuit Strain or stress is in 3 direction Stress or strain is in 3 direction	10 ⁻¹² m ² /N
Curie Temperature	T _c	°C

NCE51 - extended specification

- 1. The presented data are determined on standardized specimens in the form of small-signal measurements according to European Standard EN 50324 and IEC Publication 483.
- 2. The standardized specimens are manufactured using a standard production powder and a standard production technology.
- 3. The data given represents nominal values which were determined 24 hours after poling process at an ambient temperature $23^{\circ}C + 2^{\circ}C$.
- 4. Standard Tolerances: Electrical properties \pm 10%. Mechanical Properties \pm 5%. Piezoelectric properties \pm 5%.

Properties	Symbol	Unit	
ELECTRICAL PROPERTIES			
Dielectric dissipation factor	tan δ	[10 ⁻⁴]	150
Relative permittivity		[1] [1] [1] [1]	1900 823 1940 906
Curie Temperature	T _c	[°C]	360
Mechanical Properties			
Poisson's ratio	σ ^E	[1]	0.32
Density	ρ	[kg.m ⁻³]	7850
PIEZOELECTRIC PROPERTIES			
Frequency Constants			
Planar	Np	[Hz.m]	1925
Thickness shear	N ₁₅	[Hz.m]	1180
Transverse	N ₃₁	[Hz.m]	1370
Longitudinal	N ₃₃	[Hz.m]	1320
Thickness	Nt	[Hz.m]	2000
COUPLING FACTORS			
Planar	k _p	[1]	0.650
Thickness shear	k ₁₅	[1]	0.730
Transverse	k ₃₁	[1]	0.380
Longitudinal	k ₃₃	[1]	0.740
Thickness	k _t	[1]	0.500
Charge Constant	d ₃₃	[10 ⁻¹² C/N]	443
Voltage Constant	g ₃₃	[10 ⁻³ V.m/N]	26.3
Mechanical Quality Factor	Q _m	[1]	80
STABILITY			
Temperature Coefficient			
Range 20 - 80 °C	α _{permittivity}	[10 ⁻⁶ K ⁻¹]	4000
	α _{kp}	[K ⁻¹]	0
Aging Rates	c _ε	[%] per decade	-1.40
	с _{Np}	[%] per decade	0.25
	c _{kp}	[%] per decade	0.10

NCE51 - complete coefficient matrix

Elastic Properties

ELASTIC	COMPLIANCE MA	TRIX E			
sE	[10 ⁻¹² m ² /N]				
17.0	-5.36	-8.69	0	0	0
-5.36	17.0	-8.69	0	0	0
-8.69	-8.69	21.3	0	0	0
0	0	0	48.9	0	0
0	0	0	0	48.9	0
0	0	0	0	0	44.6

ELASTIC	COMPLIANCE MA	TRIX D			
sD	[10 ⁻¹² m ² /N]				
14.5	-7.81	-3.22	0	0	0
-7.81	14.5	-3.22	0	0	0
-3.22	-3.22	9.64	0	0	0
0	0	0	22.9	0	0
0	0	0	0	22.9	0
0	0	0	0	0	44.6

ELASTIC	STIFFNESS MATR	IX E			
cE	[10 ¹⁰ N/m ²]				
13.4	8.89	9.09	0	0	0
8.89	13.4	9.09	0	0	0
9.09	9.09	12.1	0	0	0
0	0	0	2.05	0	0
0	0	0	0	2.05	0
0	0	0	0	0	2.24

ELASTIC	STIFFNESS MATR	IX D			
cD	[10 ¹⁰ N/m ²]				
13.2	8.76	7.34	0	0	0
8.76	13.2	7.34	0	0	0
7.34	7.34	16.2	0	0	0
0	0	0	4.37	0	0
0	0	0	0	4.37	0
0	0	0	0	0	2.24

Piezoelectric Properties

CHARGE CONSTANT MATRIX						
d	[10 ⁻¹² C/N]					
0	0	0	0	669	0	
0	0	0	669	0	0	
-208	-208	443	0	0	0	

е	[C/m²]				
0	0	0	0	13.7	0
0	0	0	13.7	0	0
-6.06	-6.06	17.2	0	0	0

VOLTAG	VOLTAGE CONSTANT MATRIX							
g	[10 ⁻³ Vm/N]							
0	0	0	0	38.9	0			
0	0	0	38.9	0	0			
-12.4	-12.4	26.3	0	0	0			

h	[10 ⁸ V/m]				
0	0	0	0	17.0	0
0	0	0	17.0	0	0
-8.31	-8.31	23.5	0	0	0
0	0	0	38.9	0	0
-12.4	-12.4	26.3	0	0	0

Dielectric properties

PERMITTIVITIES [10 ⁻⁸ F/m]						
ε ₁₁ Τ	1.72		ε ₁₁ ς	0.802		
ϵ_{22}^{T}	1.72		ε ₂₂ S	0.802		
ε ₃₃ Τ	1.68		ε ₃₃ 5	0.729		

RELATIVE PERMITTIVITIES [1]						
ε _{11r} T	1940		ε _{11r} S	906		
ϵ_{22r}^{T}	1940		ε _{22r} S	906		
$\epsilon_{33r}{}^T$	1900		ε _{33r} S	823		

YOUNG MODULUS MATRIX						
ΥE	[10 ¹⁰ N/m ²]					
5.9	-18.6	-11.5	0	0	0	
-18.6	5.9	-11.5	0	0	0	
-11.5	-11.5	4.69	0	0	0	
0	0	0	2.05	0	0	
0	0	0	0	2.05	0	
0	0	0	0	0	2.24	

YOUNG MODULUS MATRIX						
ΥD	[10 ¹⁰ N/m ²]					
6.9	-12.8	-31.1	0	0	0	
-12.8	6.9	-31.1	0	0	0	
-31.1	-31.1	10.4	0	0	0	
0	0	0	4.37	0	0	
0	0	0	0	4.37	0	
0	0	0	0	0	2.24	

Matrix

Z _{ab}	Z - Property
	a - direction
	b - direction

	1	2	3	4
1	Z ₁₁	Z ₁₂	Z ₁₃	⇒b
2	Z ₂₁	Z ₂₂	Z ₂₃	
3	Z ₃₁	Z ₃₂	Z ₃₃	
4	↓ a			